segunda-feira, 12 de setembro de 2011

Trabalho de Matemática (Profº Alberto) - Pollyana Calves, Priscila Gabrielle e João Guilherme.

Johann Carl Friedrich Gauss (ou Gauß) Conhecido como o príncipe dos matemáticos, muitos o consideram o maior gênio da história da matemática. Seu QI foi estimado por psicólogos de cognição em cerca de 240.
Seu pai, Gerhard Diederich, era jardineiro e pedreiro. Severo e brutal, tudo fez para impedir que seu filho desenvolvesse seu grande potencial. Foi salvo por sua mãe Dorothea e seu tio Friederich que percebeu da inteligência de seu sobrinho.
Tinha memória fotográfica, tendo retido as impressões da infância e da meninice nítidas até a sua morte. Ressentia-se de que seu tio Friederich, um gênio, perdera-se pela morte prematura.
Antes disso já aprendera a ler e a somar sozinho. Aos sete anos entrou para a escola. Segundo uma história famosa, seu diretor, Butner, pediu que os alunos somassem os números inteiros de um a cem. Mal havia enunciado o problema e o jovem Gauss colocou sua lousa sobre a mesa, dizendo: ligget se! Sua resposta, 5050, foi encontrada através do raciocínio que demonstra a fórmula da soma de uma progressão aritmética. Alguns autores argumentam que o problema seria de ordem bastante mais complexa, sugerindo que poderia ser uma soma de uma progressão aritmética como 81097 + 81395 + 81693 + ..... + 110897.
Butner ficou tão atônito com a proeza de um menino de dez anos que pagou do próprio bolso livros de aritmética para ele, que os absorvia instantaneamente. Reconhecendo que fora ultrapassado pelo aluno, passou o ensino para seu jovem assistente, Johann Martin Bartels (1769-1856), apaixonado pela matemática. Entre Bartels, com dezessete anos, e o aluno de dez nasceu uma boa amizade que durou toda a vida. Eles estudavam juntos, ajudando-se em suas dificuldades.
O encontro de Gauss com o teorema binômio inspirou-o para alguns de seus maiores trabalhos, tornando-se Gauss o primeiro "rigorista". Insatisfeito com o que ele e Bartels encontravam em seus livros, Gauss foi além, e iniciou a análise matemática.
Nenhum matemático anterior tinha a menor concepção do que é agora aceitável como prova, envolvendo o processo infinito. Ele foi o primeiro a ver que, a "prova" que pode levar a absurdos como "menos 1 é igual ao infinito", não é prova nenhuma. Mesmo que, em alguns casos, uma fórmula dê resultados consistentes, ela não tem lugar na matemática até que a precisa condição sob a qual ela continuará a se submeter tenha sido determinada consistentemente. O rigor imposto por Gauss à análise matemática tornou-a totalmente diferente e superou toda a análise matemática feita por seus antecessores.
Jean Robert Argand nasceu em Genebra (Suiça), a 18 de Julho de 1768. Apesar de ser apenas um matemático amador, Argand ficou famoso pela sua interpretação geométrica dos números complexos, onde i é interpretado como uma rotação de 90º.
   O primeiro a publicar a interpretação geométrica de Argand foi Caspar Wessel, no entanto, o nome de Argand nunca apareceu no livro, e por isso era impossível identificar o seu autor. Foi necessário muito tempo para que o trabalho de Argand fosse conhecido como seu.
    Em Setembro de 1813, Jacques Français publicou um trabalho no qual aparecia uma representação geométrica dos números complexos, com aplicações interessantes, baseadas nas ideias de Argand. Nesta publicação, Jacques Français dizia que as ideias eram baseadas no trabalho de um matemático desconhecido, e pedia que este se desse a conhecer, para receber o devido crédito pelas suas ideias. O artigo apareceu no jornal GergonneŽs, e Argand respondeu a Jacques Français dizendo que era ele o autor dessas ideias. A partir daqui o trabalho de Argand começou a ser conhecido.
    Argand apresentou ainda uma prova para o "Teorema Fundamental da Álgebra", sendo, possivelmente, o primeiro a trabalhar com o teorema no caso em que os coeficientes são números complexos.
   Jean Robert Argand faleceu a 13 de Agosto de 1822, em Paris.



Plano de Argand-Gauss:

A cada número complexo z = a + bi, podemos associar um ponto P no plano cartesiano. No complexo podemos representar a parte real por um ponto no eixo real, e a parte imaginária por um ponto no eixo vertical, denominado eixo imaginário.
A este ponto P, correspondente ao complexo z = a +bi, chamamos de imagem ou afixo de z. Observe a representação da interpretação geométrica dos números complexos:

Atualmente, o plano dos números complexos é conhecido como plano de Argand-Gauss.
Com base no plano representado vamos calcular a distância p (letra grega: rô), entre os pontos O e P. Observe que basta aplicarmos o Teorema de Pitágoras no triângulo retângulo, dessa forma temos:
O módulo de z é representado pela grandeza p, mas também pode ser representado por |z|.
A ângulo Ө (0 ≤ Ө < 2π), formado pelo eixo real e a reta do segmento OP, é chamado de argumento de z (z ≠ 0) e é indicado por Arg(z). Baseado nessas definições podemos estabelecer as seguintes relações na interpretação geométrica dos complexos:


Exemplo
Calcule o módulo e o argumento do número complexo z = 1 + 2i.

Módulo
a = 1 e b = 2



Argumento
Ө = Arg(z)
     Portanto, o argumento de z é o arco cuja tangente é 2.           
Veja como ficaria o gráfico representativo do número complexo z = 1 + 2i.

 


Nenhum comentário:

Postar um comentário